この三角形の面積を超簡単に解く方法が凄い

top

3辺の長さが、6 5 5 の三角形があります。この三角形の面積を求めて下さい。三角形の面積の求め方は小学校で習いましたが、このままでは求めることができません。なにか足りないようです。高校生の時に習った方法だとこのままで求められるのですが、面倒な計算が出てきます。気づくことができれば、面倒な計算なしにあっという間に答えが出てくるのですが・・・。



question

三角形の面積を求めて下さい。あっ、この三角形の面積を求めるのには中学校で習ったことも少しだけ使います。でも、そんなに難しいことではありません。きっとあなたは覚えています。

図のような補助線を引くとわかりやすくなります。

hint1

補助線によって、もとの三角形は2つの直角三角形に分けられます。三平方の定理を利用すると、直角三角形で長さのわかっていない辺の長さが4であることがわかります。

hint2

もとの三角形をもう一度見てください。新しく4という数字が出てきました。

hint3

このままでは少し見づらいので、三角形を回転させてみましょう。

この向きなら、簡単に三角形の面積を求められますね。
(三角形の面積)=(底辺)×(高さ)÷2 でした。この式に、底辺6 高さ4を当てはめると、6×4÷2=12 となります。

answer

-答え

ということで、答えは12です。

三角形の底辺がいつも図形の下の方にあるとは限りません。底辺も高さもわからない三角形の面積を求めることはできないと考えてしまってはもう答えを出すことはできません。もとの三角形から底辺と高さの位置を見抜くことができれば簡単に面積を求められます。

(秒刊サンデー:わらびもち

18 COMMENTS

秒刊名無しさんでー

(笑)
なんだこれ
教科書基礎レベルやん

秒刊名無しさんでー

4が出てくる根拠の説明が抜けている。

秒刊名無しさんでー

ピタゴラスの定理で4は出ますね。

秒刊名無しさんでー

余弦定理とサインコサインで余裕

秒刊名無しさんでー

4が出てくる理由は三平方の定理を使うって書いてあるだろうよ

秒刊名無し

二等分して直角三角形が2つできた段階で長方形の面積を求めれば良い
二等分された底辺3に直角三角形の高さ4を掛けるだけで割り算は必要無い

秒刊名無し

二等分して直角三角形が2つできた段階で長方形の面積を求めれば良い
二等分された底辺3に直角三角形の高さ4を掛けるだけで割り算は必要無い

コメントを残す

メールアドレスが公開されることはありません。